Skip Navigation
Skip to contents

Epidemiol Health : Epidemiology and Health

OPEN ACCESS
SEARCH
Search

Author index

Page Path
HOME > Browse articles > Author index
Search
Soyoung Kim 2 Articles
Prediction of COVID-19 transmission dynamics using a mathematical model considering behavior changes in Korea
Soyoung Kim, Yu Bin Seo, Eunok Jung
Epidemiol Health. 2020;42:e2020026.   Published online April 13, 2020
DOI: https://doi.org/10.4178/epih.e2020026
  • 22,496 View
  • 1,322 Download
  • 51 Web of Science
  • 50 Crossref
AbstractAbstract AbstractSummary PDFSupplementary Material
Abstract
OBJECTIVES
Since the report of the first confirmed case in Daegu on February 18, 2020, local transmission of coronavirus disease 2019 (COVID-19) in Korea has continued. In this study, we aimed to identify the pattern of local transmission of COVID-19 using mathematical modeling and predict the epidemic size and the timing of the end of the spread.
METHODS
We modeled the COVID-19 outbreak in Korea by applying a mathematical model of transmission that factors in behavioral changes. We used the Korea Centers for Disease Control and Prevention data of daily confirmed cases in the country to estimate the nationwide and Daegu/Gyeongbuk area-specific transmission rates as well as behavioral change parameters using a least-squares method.
RESULTS
The number of transmissions per infected patient was estimated to be about 10 times higher in the Daegu/Gyeongbuk area than the average of nationwide. Using these estimated parameters, our models predicts that about 13,800 cases will occur nationwide and 11,400 cases in the Daegu/Gyeongbuk area until mid-June.
CONCLUSIONS
We mathematically demonstrate that the relatively high per-capita rate of transmission and the low rate of changes in behavior have caused a large-scale transmission of COVID-19 in the Daegu/Gyeongbuk area in Korea. Since the outbreak is expected to continue until May, non-pharmaceutical interventions that can be sustained over the long term are required.
Summary
Korean summary
본 논문은 행동변화를 고려한 수학적 모델을 이용하여 코로나바이러스병-19의 유행 양상을 분석하고 총 환자수와 유행기간을 예측하고자 한다. 질병관리본부 확진자 데이터를 이용하여 전국과 대구·경북 지역의 감염전파율과 행동변화율을 추정하였다. 3월 10일까지의 데이터를 기준으로 전국적으로 6월 중순까지 약 13,000명, 대구·경북지역의 경우 5월 말까지 약 11,000명의 환자가 발생할 것으로 예측된다.

Citations

Citations to this article as recorded by  
  • A framework for incorporating behavioural change into individual‐level spatial epidemic models
    Madeline A. Ward, Rob Deardon, Lorna E. Deeth
    Canadian Journal of Statistics.2024;[Epub]     CrossRef
  • Forecasting the spread of COVID-19 based on policy, vaccination, and Omicron data
    Kyulhee Han, Bogyeom Lee, Doeun Lee, Gyujin Heo, Jooha Oh, Seoyoung Lee, Catherine Apio, Taesung Park
    Scientific Reports.2024;[Epub]     CrossRef
  • Mathematical modeling and control of Covid‐19
    Atena Ghasemabadi
    Mathematical Methods in the Applied Sciences.2024; 47(12): 10478.     CrossRef
  • Assessment of age-dependent effects during the transmission of Omicron and the outcomes of booster campaign vaccination strategies
    Yang Deng, Daihai He, Yi Zhao
    Applied Mathematical Modelling.2024; 133: 148.     CrossRef
  • Mathematical Modeling of COVID-19 Transmission and Intervention in South Korea: A Review of Literature
    Hyojung Lee, Sol Kim, Minyoung Jeong, Eunseo Choi, Hyeonjeong Ahn, Jeehyun Lee
    Yonsei Medical Journal.2023; 64(1): 1.     CrossRef
  • Numerical Scheme for Compartmental Models: New Matlab Software Codes for Numerical Simulation
    Samuel Okyere, Joseph Ackora-Prah, Ebenezer Bonyah, Samuel Akwasi Adarkwa
    F1000Research.2023; 12: 445.     CrossRef
  • Factors Influencing Infection Anxiety in Korean Male Firefighters Due to COVID-19 Infection Status
    Seung-Woo Han, Hyun-Ok Jung
    Healthcare.2023; 11(11): 1623.     CrossRef
  • Neural network method and multiscale modeling of the COVID-19 epidemic in Korea
    Ziqian Li, Jiwei Jia, Guidong Liao, Young Ju Lee, Siyu Liu
    The European Physical Journal Plus.2023;[Epub]     CrossRef
  • Numerical Scheme for Compartmental Models: New Matlab Software Codes for Numerical Simulation
    Samuel Okyere, Joseph Ackora-Prah, Ebenezer Bonyah, Samuel Akwasi Adarkwa
    F1000Research.2023; 12: 445.     CrossRef
  • Studying the Effect of Particulate Matter as SARS-CoV-2 Transmitters
    Abdulrahim R. Hakami, Gasim Dobie
    Journal of Public Health Research.2022; 11(1): jphr.2021.2521.     CrossRef
  • Managing the resource allocation for the COVID-19 pandemic in healthcare institutions: a pluralistic perspective
    Manimuthu Arunmozhi, Jinil Persis, V. Raja Sreedharan, Ayon Chakraborty, Tarik Zouadi, Hanane Khamlichi
    International Journal of Quality & Reliability Management.2022; 39(9): 2184.     CrossRef
  • Panel Associations Between Newly Dead, Healed, Recovered, and Confirmed Cases During COVID-19 Pandemic
    Ming Guan
    Journal of Epidemiology and Global Health.2022; 12(1): 40.     CrossRef
  • Application of Mathematical Modeling in Prediction of COVID-19 Transmission Dynamics
    Ali AlArjani, Md Taufiq Nasseef, Sanaa M. Kamal, B. V. Subba Rao, Mufti Mahmud, Md Sharif Uddin
    Arabian Journal for Science and Engineering.2022; 47(8): 10163.     CrossRef
  • Transmission dynamics model and the coronavirus disease 2019 epidemic: applications and challenges
    Jinxing Guan, Yang Zhao, Yongyue Wei, Sipeng Shen, Dongfang You, Ruyang Zhang, Theis Lange, Feng Chen
    Medical Review.2022; 2(1): 89.     CrossRef
  • Interval type-2 fuzzy computational model for real time Kalman filtering and forecasting of the dynamic spreading behavior of novel Coronavirus 2019
    Daiana Caroline dos Santos Gomes, Ginalber Luiz de Oliveira Serra
    ISA Transactions.2022; 124: 57.     CrossRef
  • Incorporating global dynamics to improve the accuracy of disease models: Example of a COVID-19 SIR model
    Hadeel AlQadi, Majid Bani-Yaghoub, Yury E. Khudyakov
    PLOS ONE.2022; 17(4): e0265815.     CrossRef
  • A Mathematical Model of Transmission Dynamics of SARS-CoV-2 (COVID-19) with an Underlying Condition of Diabetes
    Samuel Okyere, Joseph Ackora-Prah, Shih Pin Chen
    International Journal of Mathematics and Mathematical Sciences.2022; 2022: 1.     CrossRef
  • Impact of urbanisation and environmental factors on spatial distribution of COVID-19 cases during the early phase of epidemic in Singapore
    Murali Krishna Gurram, Min Xian Wang, Yi-Chen Wang, Junxiong Pang
    Scientific Reports.2022;[Epub]     CrossRef
  • Compartmental structures used in modeling COVID-19: a scoping review
    Lingcai Kong, Mengwei Duan, Jin Shi, Jie Hong, Zhaorui Chang, Zhijie Zhang
    Infectious Diseases of Poverty.2022;[Epub]     CrossRef
  • Multi-Faceted Analysis of COVID-19 Epidemic in Korea Considering Omicron Variant: Mathematical Modeling-Based Study
    Youngsuk Ko, Victoria May Mendoza, Renier Mendoza, Yubin Seo, Jacob Lee, Jonggul Lee, Donghyok Kwon, Eunok Jung
    Journal of Korean Medical Science.2022;[Epub]     CrossRef
  • Investigating Online Learning Process in Business School: Case Study from Business School in Jakarta, Indonesia
    Sekar W. Prasetyaningtyas, Agustian B. Prasetya
    International Journal of Information and Education Technology.2022; 12(9): 964.     CrossRef
  • Evolution and consequences of individual responses during the COVID-19 outbreak
    Wasim Abbas, Masud M. A., Anna Park, Sajida Parveen, Sangil Kim, Siew Ann Cheong
    PLOS ONE.2022; 17(9): e0273964.     CrossRef
  • Managing bed capacity and timing of interventions: a COVID-19 model considering behavior and underreporting
    Victoria May P. Mendoza, Renier Mendoza, Youngsuk Ko, Jongmin Lee, Eunok Jung
    AIMS Mathematics.2022; 8(1): 2201.     CrossRef
  • Model-informed COVID-19 exit strategy with projections of SARS-CoV-2 infections generated by variants in the Republic of Korea
    Sung-mok Jung, Kyungmin Huh, Munkhzul Radnaabaatar, Jaehun Jung
    BMC Public Health.2022;[Epub]     CrossRef
  • Contribution to COVID-19 spread modelling: a physical phenomenological dissipative formalism
    Oualid Limam, Mohamed Limam
    Biomechanics and Modeling in Mechanobiology.2021; 20(1): 379.     CrossRef
  • Computational Approach For Real-Time Interval Type-2 Fuzzy Kalman Filtering and Forecasting via Unobservable Spectral Components of Experimental Data
    Daiana Caroline dos Santos Gomes, Ginalber Luiz de Oliveira Serra
    Journal of Control, Automation and Electrical Systems.2021; 32(2): 326.     CrossRef
  • Non-pharmaceutical interventions during the COVID-19 pandemic: A review
    Nicola Perra
    Physics Reports.2021; 913: 1.     CrossRef
  • Machine Learning Model for Computational Tracking and Forecasting the COVID-19 Dynamic Propagation
    Daiana Caroline dos Santos Gomes, Ginalber Luiz de Oliveira Serra
    IEEE Journal of Biomedical and Health Informatics.2021; 25(3): 615.     CrossRef
  • Graphs in the COVID-19 news: a mathematics audit of newspapers in Korea
    Oh Nam Kwon, Chaereen Han, Changsuk Lee, Kyungwon Lee, Kyeongjun Kim, Gyeongha Jo, Gangwon Yoon
    Educational Studies in Mathematics.2021; 108(1-2): 183.     CrossRef
  • Pandemic velocity: Forecasting COVID-19 in the US with a machine learning & Bayesian time series compartmental model
    Gregory L. Watson, Di Xiong, Lu Zhang, Joseph A. Zoller, John Shamshoian, Phillip Sundin, Teresa Bufford, Anne W. Rimoin, Marc A. Suchard, Christina M. Ramirez, Virginia E. Pitzer
    PLOS Computational Biology.2021; 17(3): e1008837.     CrossRef
  • Using the Weibull distribution to model COVID-19 epidemic data
    Vitor Hugo Moreau
    Model Assisted Statistics and Applications.2021; 16(1): 5.     CrossRef
  • Segmentation and shielding of the most vulnerable members of the population as elements of an exit strategy from COVID-19 lockdown
    Bram A. D. van Bunnik, Alex L. K. Morgan, Paul R. Bessell, Giles Calder-Gerver, Feifei Zhang, Samuel Haynes, Jordan Ashworth, Shengyuan Zhao, Roo Nicola Rose Cave, Meghan R. Perry, Hannah C. Lepper, Lu Lu, Paul Kellam, Aziz Sheikh, Graham F. Medley, Mark
    Philosophical Transactions of the Royal Society B: Biological Sciences.2021;[Epub]     CrossRef
  • A model and predictions for COVID-19 considering population behavior and vaccination
    Thomas Usherwood, Zachary LaJoie, Vikas Srivastava
    Scientific Reports.2021;[Epub]     CrossRef
  • Behavioral Risk Modeling for Pandemics: Overcoming Challenges and Advancing the Science
    Ellen P. Carlin, Koya C. Allen, Jeffrey J. Morgan, Jean-Paul Chretien, Suzan Murray, Deborah Winslow, Dawn Zimmerman
    Health Security.2021; 19(4): 447.     CrossRef
  • Structure of epidemic models: toward further applications in economics
    Toshikazu Kuniya
    The Japanese Economic Review.2021; 72(4): 581.     CrossRef
  • How Important Is Behavioral Change during the Early Stages of the COVID-19 Pandemic? A Mathematical Modeling Study
    Jongmin Lee, Seok-Min Lee, Eunok Jung
    International Journal of Environmental Research and Public Health.2021; 18(18): 9855.     CrossRef
  • Factors shaping the COVID-19 epidemic curve: a multi-country analysis
    Su Yeon Jang, Laith Hussain-Alkhateeb, Tatiana Rivera Ramirez, Ahmed Asa’ad Al-Aghbari, Dhia Joseph Chackalackal, Rocio Cardenas-Sanchez, Maria Angelica Carrillo, In-Hwan Oh, Eduardo Andrés Alfonso-Sierra, Pia Oechsner, Brian Kibiwott Kirui, Martin Anto,
    BMC Infectious Diseases.2021;[Epub]     CrossRef
  • A Bidirectional Long Short-Term Memory Model Algorithm for Predicting COVID-19 in Gulf Countries
    Theyazn H. H. Aldhyani, Hasan Alkahtani
    Life.2021; 11(11): 1118.     CrossRef
  • Health and pathology: a brief history of the biopolitics of US mathematics education
    Ryan Ziols, Kathryn L. Kirchgasler
    Educational Studies in Mathematics.2021; 108(1-2): 123.     CrossRef
  • Robust optimal parameter estimation for the susceptible-unidentified infected-confirmed model
    Chaeyoung Lee, Soobin Kwak, Sangkwon Kim, Youngjin Hwang, Yongho Choi, Junseok Kim
    Chaos, Solitons & Fractals.2021; 153: 111556.     CrossRef
  • Risk Perceptions, Knowledge and Behaviors of General and High-Risk Adult Populations Towards COVID-19: A Systematic Scoping Review
    Nathalie Clavel, Janine Badr, Lara Gautier, Mélanie Lavoie-Tremblay, Jesseca Paquette
    Public Health Reviews.2021;[Epub]     CrossRef
  • Modeling COVID-19 Transmission Dynamics With Self-Learning Population Behavioral Change
    Tsz-Lik Chan, Hsiang-Yu Yuan, Wing-Cheong Lo
    Frontiers in Public Health.2021;[Epub]     CrossRef
  • The first year of covid-19 in croatia - a mathematical model
    Tibor Rodiger, Edgar Glavaš, Ivan Kovač
    Croatian Regional Development Journal.2021; 2(2): 32.     CrossRef
  • Covid-19 Predictions Using a Gauss Model, Based on Data from April 2
    Janik Schüttler, Reinhard Schlickeiser, Frank Schlickeiser, Martin Kröger
    Physics.2020; 2(2): 197.     CrossRef
  • Preliminary Clinical and Epidemiological Analysis of the First 1,000 Pediatric COVID-19 Cases in Moscow Region
    Elena R. Meskina
    Journal of microbiology, epidemiology and immunobiology.2020; 97(3): 202.     CrossRef
  • Forecast predictions for the COVID-19 pandemic in Brazil by statistical modeling using the Weibull distribution for daily new cases and deaths
    Vitor Hugo Moreau
    Brazilian Journal of Microbiology.2020; 51(3): 1109.     CrossRef
  • Mathematical modeling for infectious viral disease: The COVID‐19 perspective
    Hafeez Aderinsayo Adekola, Ibrahim Ayoade Adekunle, Haneefat Olabimpe Egberongbe, Sefiu Adekunle Onitilo, Idris Nasir Abdullahi
    Journal of Public Affairs.2020;[Epub]     CrossRef
  • Estimating the Transmission Risk of COVID-19 in Nigeria: A Mathematical Modelling Approach
    Irany FA, Akwafuo SE, Abah T, Mikler AR
    Journal of Health Care and Research.2020; 1(3): 135.     CrossRef
  • Underlying Principles of a Covid-19 Behavioral Vaccine for a Sustainable Cultural Change
    Kalliu Carvalho Couto, Flora Moura Lorenzo, Marco Tagliabue, Marcelo Borges Henriques, Roberta Freitas Lemos
    International Journal of Environmental Research and Public Health.2020; 17(23): 9066.     CrossRef
  • Understanding South Korea’s Response to the COVID-19 Outbreak: A Real-Time Analysis
    Eunsun Jeong, Munire Hagose, Hyungul Jung, Moran Ki, Antoine Flahault
    International Journal of Environmental Research and Public Health.2020; 17(24): 9571.     CrossRef
Ebola virus disease outbreak in Korea: use of a mathematical model and stochastic simulation to estimate risk
Youngsuk Ko, Seok-Min Lee, Soyoung Kim, Moran Ki, Eunok Jung
Epidemiol Health. 2019;41:e2019048.   Published online November 24, 2019
DOI: https://doi.org/10.4178/epih.e2019048
  • 13,041 View
  • 213 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract AbstractSummary PDFSupplementary Material
Abstract
OBJECTIVES
According to the World Health Organization, there have been frequent reports of Ebola virus disease (EVD) since the 2014 EVD pandemic in West Africa. We aim to estimate the outbreak scale when an EVD infected person arrives in Korea.
METHODS
Western Africa EVD epidemic mathematical model SEIJR or SEIJQR was modified to create a Korean EVD outbreak model. The expected number of EVD patients and outbreak duration were calculated by stochastic simulation under the scenarios of Best case, Diagnosis delay, and Case missing.
RESULTS
The 2,000 trials of stochastic simulation for each scenario demonstrated the following results: The possible median number of patients is 2 and the estimated maximum number is 11 when the government intervention is proceeded immediately right after the first EVD case is confirmed. With a 6-day delay in diagnosis of the first case, the median number of patients becomes 7, and the maximum, 20. If the first case is missed and the government intervention is not activated until 2 cases of secondary infection occur, the median number of patients is estimated at 15, and the maximum, at 35.
CONCLUSIONS
Timely and rigorous diagnosis is important to reduce the spreading scale of infection when a new communicable disease is inflowed into Korea. Moreover, it is imperative to strengthen the local surveillance system and diagnostic protocols to avoid missing cases of secondary infection.
Summary
Korean summary
본 연구는 수학적 모델과 확률 시뮬레이션 기법을 이용하여 국내에 유입되지 않았던 에볼라바이러스병(EVD)의 확산 위험도를 정량적으로 예측하는 첫 번째 연구이다. 또한 이 연구를 통해 에볼라바이러스병 환자의 유입 시 발생 가능한 진단 지연 혹은 유입 미인지 상황을 가정하여 발생할 수 있는 2차 감염자 수 및 감염 종식까지의 기간을 계산했고 에볼라바이러스 유입 대비 실시간모니터링의 중요성과 확산 시 상황에 따른 최대 일일 환자수를 합리적으로 제시할 수 있다.

Citations

Citations to this article as recorded by  
  • Estimating the Transmission Risk of COVID-19 in Nigeria: A Mathematical Modelling Approach
    Irany FA, Akwafuo SE, Abah T, Mikler AR
    Journal of Health Care and Research.2020; 1(3): 135.     CrossRef

Epidemiol Health : Epidemiology and Health
TOP