1. Cole P, Morrison AS. Basic issues in population screening for cancer. J Natl Cancer Inst 1980;64:1263-1272. PMID:

6767876
2. Lundgren B. Observations on growth rate of breast carcinomas and its possible implications for lead time. Cancer 1977;40:1722-1725. PMID:

907980
3. Otten JD, van Schoor G, Peer PG, den Heeten GJ, Holland R, Broeders MJ, et al. Growth rate of invasive ductal carcinomas from a screened 50-74-year-old population. J Med Screen 2018;25:40-46. PMID:

28084888
5. Stevenson CE. Statistical models for cancer screening. Stat Methods Med Res 1995;4:18-32. PMID:

7613635
6. Zelen M, Feinleib M. On the theory of screening for chronic diseases. Biometrika 1969;56:601-614.

7. Day NE, Walter SD. Simplified models of screening for chronic disease: estimation procedures from mass screening programmes. Biometrics 1984;40:1-14.

8. Paci E, Duffy SW. Modelling the analysis of breast cancer screening programmes: sensitivity, lead time and predictive value in the Florence District Programme (1975-1986). Int J Epidemiol 1991;20:852-858.

9. Chen JS, Prorok PC. Lead time estimation in a controlled screening program. Am J Epidemiol 1983;118:740-751.

10. van Oortmarssen GJ, Habbema JD, Lubbe JT, van der Maas PJ. A model-based analysis of the HIP project for breast cancer screening. Int J Cancer 1990;46:207-213.

11. Duffy SW, Chen HH, Tabar L, Day NE. Estimation of mean sojourn time in breast cancer screening using a Markov chain model of both entry to and exit from the preclinical detectable phase. Stat Med 1995;14:1531-1543.

12. Jiang H, Walter SD, Brown PE, Chiarelli AM. Estimation of screening sensitivity and sojourn time from an organized screening program. Cancer Epidemiol 2016;44:178-185.

13. Hutchison GB, Shapiro S. Lead time gained by diagnostic screening for breast cancer. J Natl Cancer Inst 1968;41:665-681.

14. Shapiro S, Goldberg JD, Hutchison GB. Lead time in breast cancer detection and implications for periodicity of screening. Am J Epidemiol 1974;100:357-366.

15. Albert A, Gertman PM, Louis TA. Screening for the early detection of cancer—I. The temporal natural history of a progressive disease state. Math Biosci 1978;40:1-59.

16. Albert A, Gertman PM, Louis TA, Liu SI. Screening for the early detection of cancer—II. The impact of screening on the natural history of the disease. Math Biosci 1978;40:61-109.

17. Louis TA, Albert A, Heghinian S. Screening for the early detection of cancer—III. Estimation of disease natural history. Math Biosci 1978;40:111-144.

18. Launoy G, Smith TC, Duffy SW, Bouvier V. Colorectal cancer mass-screening: estimation of faecal occult blood test sensitivity, taking into account cancer mean sojourn time. Int J Cancer 1997;73:220-224.

19. Brenner H, Altenhofen L, Katalinic A, Lansdorp-Vogelaar I, Hoffmeister M. Sojourn time of preclinical colorectal cancer by sex and age: estimates from the German national screening colonoscopy database. Am J Epidemiol 2011;174:1140-1146.

20. Walter SD, Day NE. Estimation of the duration of a pre-clinical disease state using screening data. Am J Epidemiol 1983;118:865-886.

21. Alexander FE. Estimation of sojourn time distributions and false negative rates in screening programmes which use two modalities. Stat Med 1989;8:743-755.

22. Pinsky PF. An early- and late-stage convolution model for disease natural history. Biometrics 2004;60:191-198.

23. Shen Y, Zelen M. Robust modeling in screening studies: estimation of sensitivity and preclinical sojourn time distribution. Biostatistics 2005;6:604-614.

24. Brookmeyer R, Day NE, Moss S. Case-control studies for estimation of the natural history of preclinical disease from screening data. Stat Med 1986;5:127-138.

25. Brookmeyer R, Day NE. Two-stage models for the analysis of cancer screening data. Biometrics 1987;43:657-669.

26. Straatman H, Peer PG, Verbeek AL. Estimating lead time and sensitivity in a screening program without estimating the incidence in the screened group. Biometrics 1997;53:217-229.

27. Shen Y, Zelen M. Parametric estimation procedures for screening programmes: stable and nonstable disease models for multimodality case finding. Biometrika 1999;86:503-515.

28. Pinsky PF. Estimation and prediction for cancer screening models using deconvolution and smoothing. Biometrics 2001;57:389-395.

29. Hsieh HJ, Chen TH, Chang SH. Assessing chronic disease progression using non-homogeneous exponential regression Markov models: an illustration using a selective breast cancer screening in Taiwan. Stat Med 2002;21:3369-3382.

31. Cong XJ, Shen Y, Miller AB. Estimation of age-specific sensitivity and sojourn time in breast cancer screening studies. Stat Med 2005;24:3123-3138.

32. Shen Y, Dong W, Gulati R, Ryser MD, Etzioni R. Estimating the frequency of indolent breast cancer in screening trials. Stat Methods Med Res 2019;28:1261-1271.

33. Etzioni R, Shen Y. Estimating asymptomatic duration in cancer: the AIDS connection. Stat Med 1997;16:627-644.

34. Chen HH, Duffy SW, Tabar L. A Markov chain method to estimate the tumour progression rate from preclinical to clinical phase, sensitivity and positive predictive value for mammography in breast cancer screening. J R Stat Soc Ser D Stat 1996;45:307-317.

35. Chen TH, Duffy SW, Day NE. Markov chain models for progression of breast cancer. Part I: tumour attributes and the preclinical screen-detectable phase. J Epidemiol Biostat 1997;2:9-23.

36. Duffy SW, Day NE, Tabár L, Chen HH, Smith TC. Markov models of breast tumor progression: some age-specific results. J Natl Cancer Inst Monogr 1997;1997:93-97.

37. Chen TH, Kuo HS, Yen MF, Lai MS, Tabar L, Duffy SW. Estimation of sojourn time in chronic disease screening without data on interval cases. Biometrics 2000;56:167-172.

38. Shen S, Han SX, Petousis P, Weiss RE, Meng F, Bui AA, et al. A Bayesian model for estimating multi-state disease progression. Comput Biol Med 2017;81:111-120.

39. Myles JP, Nixon RM, Duffy SW, Tabar L, Boggis C, Evans G, et al. Bayesian evaluation of breast cancer screening using data from two studies. Stat Med 2003;22:1661-1674.

41. Ripping TM, Ten Haaf K, Verbeek AL, van Ravesteyn NT, Broeders MJ. Quantifying overdiagnosis in cancer screening: a systematic review to evaluate the methodology. J Natl Cancer Inst 2017;109:djx060.

42. Freeman J, Hutchison GB. Prevalence, incidence and duration. Am J Epidemiol 1980;112:707-723.

43. Borgelt C, Kruse R. Graphical models: methods for data analysis and mining. New York: John Wiley; 2002. p 1-368.

45. Lansdorp-Vogelaar I, van Ballegooijen M, Boer R, Zauber A, Habbema JD. A novel hypothesis on the sensitivity of the fecal occult blood test: results of a joint analysis of 3 randomized controlled trials. Cancer 2009;115:2410-2419.

46. Aarts A, Duffy SW, Geurts S, Vulkan DP, Otten J, Hsu CY, et al. Test sensitivity of mammography and mean sojourn time over 40 years of breast cancer screening in Nijmegen (The Netherlands). J Med Screen 2019;26:147-153.

48. Segnan N, Minozzi S, Armaroli P, Cinquini M, Bellisario C, González-Lorenzo M, et al. Epidemiologic evidence of slow growing, nonprogressive or regressive breast cancer: a systematic review. Int J Cancer 2016;139:554-573.