Skip Navigation
Skip to contents

Epidemiol Health : Epidemiology and Health

OPEN ACCESS
SEARCH
Search

Author index

Page Path
HOME > Browse articles > Author index
Search
Kyung-Hwa Choi 2 Articles
Introduction to the Forensic Research via Omics Markers in Environmental Health Vulnerable Areas (FROM) study
Jung-Yeon Kwon, Woo Jin Kim, Yong Min Cho, Byoung-gwon Kim, Seungho Lee, Jee Hyun Rho, Sang‑Yong Eom, Dahee Han, Kyung-Hwa Choi, Jang-Hee Lee, Jeeyoung Kim, Sungho Won, Hee-Gyoo Kang, Sora Mun, Hyun Ju Yoo, Jung-Woong Kim, Kwan Lee, Won-Ju Park, Seongchul Hong, Young-Soub Hong
Epidemiol Health. 2024;e2024062.   Published online July 12, 2024
DOI: https://doi.org/10.4178/epih.e2024062    [Accepted]
  • 218 View
  • 10 Download
AbstractAbstract PDF
Abstract
OBJECTIVES
Exposure to humidifier disinfectants has been linked to respiratory diseases, including interstitial lung disease, asthma, and pneumonia. Consequently, numerous toxicological studies have explored respiratory damage as both a necessary and sufficient condition for these diseases. We systematically reviewed and integrated evidence from toxicological studies by applying the evidence integration method established in previous research to confirm the biological plausibility of the association between exposure and disease.
METHODS
We conducted a literature search focusing on polyhexamethylene guanidine phosphate (PHMG) and chloromethylisothiazolinone/methylisothiazolinone (CMIT/MIT), the primary ingredients in humidifier disinfectants. We selected relevant studies based on their quality and the population, exposure, comparator, outcome (PECO) statements. These studies were categorized into 3 lines of evidence: hazard information, animal studies, and mechanistic studies. Based on a systematic review, we integrated the evidence to develop an aggregate exposure pathway–adverse outcome pathway (AEP-AOP) model for respiratory damage. The reliability and relevance of our findings were assessed by comparing them with the hypothesized pathogenic mechanisms of respiratory diseases.
RESULTS
The integration of each AEP-AOP component for PHMG and CMIT/MIT led to the development of an AEP-AOP model, wherein disinfectants released from humidifiers in aerosol or gaseous form reached target sites, causing respiratory damage through molecular initiating events and key events. The model demonstrated high reliability and relevance to the pathogenesis of respiratory diseases.
CONCLUSIONS
The AEP-AOP model developed in this study provides strong evidence that exposure to humidifier disinfectants causes respiratory diseases. This model demonstrates the pathways leading to respiratory damage, a hallmark of these conditions.
Summary
Effect modification of consecutive high concentration days on the association between fine particulate matter and mortality: a multi-city study in Korea
Hyungryul Lim, Sanghyuk Bae, Jonghyuk Choi, Kyung-Hwa Choi, Hyun-Joo Bae, Soontae Kim, Mina Ha, Ho-Jang Kwon
Epidemiol Health. 2022;44:e2022052.   Published online June 9, 2022
DOI: https://doi.org/10.4178/epih.e2022052
  • 8,143 View
  • 324 Download
AbstractAbstract AbstractSummary PDFSupplementary Material
Abstract
OBJECTIVES
Although there is substantial evidence for the short-term effect of fine particulate matter (PM<sub>2.5</sub>) on daily mortality, few epidemiological studies have explored the effect of prolonged continuous exposure to high concentrations of PM<sub>2.5</sub>. This study investigated how the magnitude of the mortality effect of PM<sub>2.5</sub> exposure is modified by persistent exposure to high PM<sub>2.5</sub> concentrations.
METHODS
We analyzed data on the daily mortality count, simulated daily PM<sub>2.5</sub> level, mean daily temperature, and relative humidity level from 7 metropolitan cities from 2006 to 2019. Generalized additive models (GAMs) with quasi-Poisson distribution and random-effects meta-analyses were used to pool city-specific effects. To investigate the effect modification of continuous exposure to prolonged high concentrations, we applied categorical consecutive-day variables to the GAMs as effect modification terms for PM<sub>2.5</sub>.
RESULTS
The mortality risk increased by 0.33% (95% confidence interval [CI], 0.16 to 0.50), 0.47% (95% CI, -0.09 to 1.04), and 0.26% (95% CI, -0.08 to 0.60) for all-cause, respiratory, and cardiovascular diseases, respectively, with a 10 μg/m3 increase in PM<sub>2.5</sub> concentration. The risk of all-cause mortality per 10 μg/m3 increase in PM<sub>2.5</sub> on the first and fourth consecutive days significantly increased by 0.63% (95% CI, 0.20 to 1.06) and 0.36% (95% CI, 0.01 to 0.70), respectively.
CONCLUSIONS
We found increased risks of all-cause, respiratory, and cardiovascular mortality related to daily PM<sub>2.5</sub> exposure on the day when exposure to high PM<sub>2.5</sub> concentrations began and when exposure persisted for more than 4 days with concentrations of ≥35 μg/m3. Persistently high PM<sub>2.5</sub> exposure had a stronger effect on seniors.
Summary
Korean summary
한국의 7개 대도시를 배경으로 수행한 본 시계열 연구를 통하여 2006년부터 2019년까지의 기간 동안에 초미세먼지의 단기 노출이 일별 사망률을 증가시키며, 교호작용모형을 통해 일평균 35 μg/m3 이상의 고농도 지속기간이 처음 시작되는 날과 넷째 지속일에 이러한 사망효과가 커짐을 보고하였다. 이러한 고농도 지속기간의 교호작용은 65세 이상 연령군에서 더욱 두드러졌다.
Key Message
With our Korean multi-city study design from 2006 to 2019, the short-term effects of PM2.5 on mortality were greater when the high PM2.5 concentration duration began during the day and lasted for approximately 4 days, and the elderly may be more affected by persistently high PM2.5.

Epidemiol Health : Epidemiology and Health